Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465854

RESUMO

The term craniovascular traits refers to the imprints left by arteries and veins on the skull bones. These features can be used in biological anthropology and archaeology to investigate the morphology of the vascular network in extinct species and past populations. Generally, the term refers to macrovascular features of the endocranial cavity, like those associated with the middle meningeal artery, venous sinuses, emissary foramina, and diploic channels. However, small vascular passages (here called microforamina or microchannels) have been occasionally described on the endocranial surface. The larger ones (generally with a diameter between 0.5 and 2.0 mm) can be detected through medical scanners on osteological collections. In this study, we describe and quantify the number and distribution of these microforamina in adult humans (N = 45) and, preliminarily, in a small sample of children (N = 7). Adults display more microchannels than juvenile skulls. A higher frequency in females is also observed, although this result is not statistically significant and might be associated with allometric cranial variations. The distribution of the microforamina is particularly concentrated on the top of the vault, in particular along the sagittal, metopic, and coronal sutures, matching the course of major venous sinuses and parasagittal bridging veins. Nonetheless, the density is lower in the region posterior to bregma. Beyond oxygenation, these vessels are likely involved in endocranial thermal regulation, infection, inflammation, and immune responses, and their distribution and prevalence can hence be of interest in human biology, evolutionary anthropology, and medicine.

2.
J Comp Neurol ; 532(1): e25583, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289186

RESUMO

Evolutionary anthropology relies on both neontological and paleontological information. In the latter case, fields such as paleoneurology, neuroarchaeology, and cognitive archaeology are supplying new perspectives in prehistory and neuroscience. Cognitive archaeology, in particular, investigates the behaviors associated with extinct species or cultures according to specific psychological models. For example, changes in working memory, attention, or visuospatial integration can be postulated when related behavioral changes are described in the archaeological record. However, cognition is a process based on different and partially independent functional elements, and extinct species could hence have evolved distinct combinations of cognitive abilities or features, based on both quantitative and qualitative differences. Accordingly, differences in working memory can lead to more conceptual or more holistic mindsets, with important changes in the perception and management of the mental experience. The parietal cortex is particularly interesting, in this sense, being involved in functions associated with body-tool integration, attention, and visual imaging. In some cases, evolutionary mismatches among these elements can induce drawbacks that, despite their positive effects on natural selection, can introduce important constraints in our own mental skills. Beyond the theoretical background, some hypotheses can be tested following methods in experimental psychology. In any case, theories in cognitive evolution must acknowledge that, beyond the brain and its biology, the human mind is also deeply rooted in body perception, in social networks, and in technological extension.


Assuntos
Arqueologia , Neurociências , Humanos , Cognição , Encéfalo , Memória de Curto Prazo
3.
J Anat ; 244(2): 274-296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935387

RESUMO

Palaeoneurology is a complex field as the object of study, the brain, does not fossilize. Studies rely therefore on the (brain) endocranial cast (often named endocast), the only available and reliable proxy for brain shape, size and details of surface. However, researchers debate whether or not specific marks found on endocasts correspond reliably to particular sulci and/or gyri of the brain that were imprinted in the braincase. The aim of this study is to measure the accuracy of sulcal identification through an experiment that reproduces the conditions that palaeoneurologists face when working with hominin endocasts. We asked 14 experts to manually identify well-known foldings in a proxy endocast that was obtained from an MRI of an actual in vivo Homo sapiens head. We observe clear differences in the results when comparing the non-corrected labels (the original labels proposed by each expert) with the corrected labels. This result illustrates that trying to reconstruct a sulcus following the very general known shape/position in the literature or from a mean specimen may induce a bias when looking at an endocast and trying to follow the marks observed there. We also observe that the identification of sulci appears to be better in the lower part of the endocast compared to the upper part. The results concerning specific anatomical traits have implications for highly debated topics in palaeoanthropology. Endocranial description of fossil specimens should in the future consider the variation in position and shape of sulci in addition to using models of mean brain shape. Moreover, it is clear from this study that researchers can perceive sulcal imprints with reasonably high accuracy, but their correct identification and labelling remains a challenge, particularly when dealing with extinct species for which we lack direct knowledge of the brain.


Assuntos
Hominidae , Crânio , Humanos , Animais , Crânio/anatomia & histologia , Encéfalo , Fósseis , Imageamento por Ressonância Magnética , Evolução Biológica
4.
Anat Rec (Hoboken) ; 307(2): 345-355, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37615332

RESUMO

Humans possess morphologically complex brains, which are spatially constrained by their many intrinsic and extrinsic physical interactions. Anatomical network analysis can be used to study these constraints and their implications. Modularity is a key issue in this framework, namely, the presence of groups of elements that undergo morphological evolution in a concerted way. An array of community detection algorithms was tested on a previously designed anatomical network model of the human brain in order to provide a detailed assessment of modularity in this context. The algorithms that provide the highest quality partitions also reveal general phenotypic patterns underlying the topology of human brain morphology. Taken together, the community detection algorithms highlight the simultaneous presence of a longitudinal and a vertical modular partition of the brain's topology, the combination of which matches the organization of the enveloping braincase. Specifically, the longitudinal organization is in line with the different morphogenetic environments of the three endocranial fossae, while the vertical arrangement corresponds to the distinct developmental processes associated with the cranial base and vault, respectively. The results are robust and have the potential to be compared with equivalent network models of other species. Furthermore, they suggest a degree of concerted topological reciprocity in the spatial organization of brain and skull elements, and posit questions about the extent to which geometrical constraints of the cranial base and the modular partition of the corresponding brain regions may channel both evolutionary and developmental trajectories.


Assuntos
Evolução Biológica , Hominidae , Animais , Humanos , Crânio/anatomia & histologia , Base do Crânio/anatomia & histologia , Encéfalo/anatomia & histologia , Modelos Anatômicos
5.
J Intell ; 11(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754912

RESUMO

Brain evolution is a key topic in evolutionary anthropology. Unfortunately, in this sense the fossil record can usually support limited anatomical and behavioral inferences. Nonetheless, information from fossil species is, in any case, particularly valuable, because it represents the only direct proof of cerebral and behavioral changes throughout the human phylogeny. Recently, archeology and psychology have been integrated in the field of cognitive archeology, which aims to interpret current cognitive models according to the evidence we have on extinct human species. In this article, such evidence is reviewed in order to consider whether and to what extent the archeological record can supply information regarding changes of the attentional system in different taxa of the human genus. In particular, behavioral correlates associated with the fronto-parietal system and working memory are employed to consider recent changes in our species, Homo sapiens, and a mismatch between attentional and visuospatial ability is hypothesized. These two functional systems support present-moment awareness and mind-wandering, respectively, and their evolutionary unbalance can explain a structural sensitivity to psychological distress in our species.

6.
Am J Biol Anthropol ; 181(2): 206-215, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810873

RESUMO

The nearly complete cranium DAN5/P1 was found at Gona (Afar, Ethiopia), dated to 1.5-1.6 Ma, and assigned to the species Homo erectus. Its size is, nonetheless, particularly small for the known range of variation of this taxon, and the cranial capacity has been estimated as 598 cc. In this study, we analyzed a reconstruction of its endocranial cast, to investigate its paleoneurological features. The main anatomical traits of the endocast were described, and its morphology was compared with other fossil and modern human samples. The endocast shows most of the traits associated with less encephalized human taxa, like narrow frontal lobes and a simple meningeal vascular network with posterior parietal branches. The parietal region is relatively tall and rounded, although not especially large. Based on our set of measures, the general endocranial proportions are within the range of fossils included in the species Homo habilis or in the genus Australopithecus. Similarities with the genus Homo include a more posterior position of the frontal lobe relative to the cranial bones, and the general endocranial length and width when size is taken into account. This new specimen extends the known brain size variability of Homo ergaster/erectus, while suggesting that differences in gross brain proportions among early human species, or even between early humans and australopiths, were absent or subtle.


Assuntos
Hominidae , Animais , Humanos , Lactente , Hominidae/anatomia & histologia , Etiópia , Evolução Biológica , Crânio/anatomia & histologia , Encéfalo/anatomia & histologia
7.
Am J Biol Anthropol ; 180(4): 768-776, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36789740

RESUMO

OBJECTIVES: Two decades ago, Rilling and Seligman, hereafter abbreviated to RAS Study, suggested modern humans had relatively larger temporal lobes for brain size compared to other anthropoids. Despite many subsequent studies drawing conclusions about the evolutionary implications for the emergence of unique cerebral specializations in Homo sapiens, no re-assessment has occurred using updated methodologies. METHODS: We reassessed the association between right temporal lobe volume (TLV) and right hemisphere volume (HV) in the anthropoid brain. In a sample compiled de novo by us, T1-weighted in vivo Magnetic Resonance Imaging (MRI) scans of 11 extant anthropoid species were calculated by-voxel from the MRI and the raw data from RAS Study directly compared to our sample. Phylogenetic Generalized Least-Squares (PGLS) regression and trait-mapping using Blomberg's K (kappa) tested the correlation between HV and TLV accounting for anthropoid phylogeny, while bootstrapped PGLS regressions tested difference in slopes and intercepts between monkey and ape subsamples. RESULTS: PGLS regressions indicated statistically significant correlations (r2 < 0.99; p ≤ 0.0001) between TLV and HV with moderate influence from phylogeny (K ≤ 0.42). Bootstrapped PGLS regression did not show statistically significant differences in slopes between monkeys and apes but did for intercepts. In our sample, human TLV was not larger than expected for anthropoids. DISCUSSION: Updated imaging, increased sample size and advanced statistical analyses did not find statistically significant results that modern humans possessed a disproportionately large temporal lobe volume compared to the general anthropoid trend. This has important implications for human and non-human primate brain evolution.


Assuntos
Evolução Biológica , Hominidae , Animais , Humanos , Filogenia , Haplorrinos , Primatas , Lobo Temporal/diagnóstico por imagem
8.
J Anat ; 242(6): 973-985, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36691774

RESUMO

A network approach to the macroscopic anatomy of the human brain can be used to model physical interactions among regions in order to study their topological properties, as well as the topological properties of the overall system. Here, a comprehensive model of human brain topology is presented, based on traditional macroanatomical divisions of the whole brain, which includes its subcortical regions. The aim was to localise anatomical elements that are essential for the geometric balance of the brain, as to identify underlying phenotypic patterns of spatial arrangement and understand how these patterns may influence brain morphology in ontogeny and phylogeny. The model revealed that the parahippocampal gyrus, the anterior lobe of the cerebellum and the ventral portion of the midbrain are subjected to major topological constraints that are likely to limit or channel their morphological evolution. The present model suggests that the brain can be divided into a superior and an inferior morphological block, linked with extrinsic topological constraints imposed by the surrounding braincase. This information should be considered duly both in ontogenetic and phylogenetic studies of primate neuroanatomy.


Assuntos
Encéfalo , Crânio , Animais , Humanos , Filogenia , Encéfalo/anatomia & histologia , Primatas , Neuroanatomia , Imageamento por Ressonância Magnética
9.
Brain Struct Funct ; 228(1): 145-167, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35451642

RESUMO

Traditional and new disciplines converge in suggesting that the parietal lobe underwent a considerable expansion during human evolution. Through the study of endocasts and shape analysis, paleoneurology has shown an increased globularity of the braincase and bulging of the parietal region in modern humans, as compared to other human species, including Neandertals. Cortical complexity increased in both the superior and inferior parietal lobules. Emerging fields bridging archaeology and neuroscience supply further evidence of the involvement of the parietal cortex in human-specific behaviors related to visuospatial capacity, technological integration, self-awareness, numerosity, mathematical reasoning and language. Here, we complement these inferences on the parietal lobe evolution, with results from more classical neuroscience disciplines, such as behavioral neurophysiology, functional neuroimaging, and brain lesions; and apply these to define the neural substrates and the role of the parietal lobes in the emergence of functions at the core of material culture, such as tool-making, tool use and constructional abilities.


Assuntos
Antropologia Cultural , Evolução Biológica , Lobo Parietal , Humanos , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia , Crânio/anatomia & histologia
10.
Anat Rec (Hoboken) ; 306(1): 143-161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684986

RESUMO

Craniovascular traits in the endocranium (traces of middle meningeal vessels and dural venous sinuses, emissary foramina) provide evidence of vascular anatomy in osteological samples. We investigate the craniovascular variation in four South American samples and the effect of artificial cranial modifications (ACM). CT scans of human adult crania from four archeological samples from southern South America (including skulls with ACM) are used for the analyses. The craniovascular features in the four samples are described, skulls with and without ACM are compared, and additionally, South Americans are compared to a previously analyzed sample of Europeans. Of the four South American samples, the Southern Patagonian differs the most, showing the most distinct cranial dimensions, no ACM, and larger diameters of the emissary foramina. Unlike previous studies, we did not find any major differences in craniovascular features between modified and non-modified skulls, except that the skulls with ACM present somewhat smaller foramina. South Americans significantly differed from Europeans, especially in the anteroposterior dominance of the middle meningeal artery, in the pattern of sinus confluence, in the occurrence of enlarged occipito-marginal sinuses, and in foramina frequencies and diameters. Craniovascular morphology is not affected by the cranial size, even in skulls with ACM, indicating a minor or null influence of structural topological factors. Concerning the samples from distinct geographic and climatic environments, it must be evaluated whether the craniovascular morphogenesis might be partially influenced by specific functions possibly associated with thermoregulation, intracranial pressure, and the maintenance of intracranial homeostasis.


Assuntos
Arqueologia , Osteologia , Humanos , América do Sul
11.
J Hum Evol ; 174: 103281, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455402

RESUMO

In 1987, Phillip Tobias published a comprehensive anatomical analysis of the endocasts attributed to Homo habilis, discussing issues dealing with brain size, sulcal patterns, and vascular traces. He suggested that the neuroanatomy of this species evidenced a clear change toward many cerebral traits associated with our genus, mostly when concerning the morphology of the frontal and parietal cortex. After more than 30 years, the fossil record associated with this taxon has not grown that much, but we have much more information on cranial and brain biology, and we are using a larger array of digital methods to investigate the paleoneurological variation observed in the human genus. Brain volume, the size of the frontal lobe, or the gross hemispheric asymmetries are still relevant issues, but they are considered to be less central than before. More attention is instead being paid to the cortical organization, the relationships with the cranial architecture, and the influence of molecular or ecological factors. Although the field of paleoneurology can currently count on a larger range of tools and principles, there is still a general lack of anatomical information on many endocranial traits. This aspect is probably crucial for the agenda of paleoneurology. More importantly, the whole science is undergoing a delicate change, because of the growing influence of the social environment. In this sense, the disciplines working with fossils (and, in particular, with brain evolution) should take particular care to maintain a healthy professional situation, avoiding an excess of speculation and overstatement.


Assuntos
Hominidae , Animais , Humanos , Hominidae/anatomia & histologia , Evolução Biológica , Encéfalo/anatomia & histologia , Crânio/anatomia & histologia , Fósseis
12.
J Anthropol Sci ; 100: 173-192, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36511800

RESUMO

The relationship between anthropology and neuroscience has always been friendly but controversial, because they embrace inclusive common topics (human beings and their brains) although following distinct approaches, often more holistic and speculative in the former field, more reductionist and quantitative in the latter. In recent decades, novel disciplines have been proposed to bridge the gap between anthropology and neuroscience, mostly taking into account their common interest in human evolution. Paleoneurology deals with the study of brain anatomy in extinct species. Neuroarchaeology concerns the study of brain functions associated with behaviours that are of interest according to the archaeological record. Cognitive archaeology investigates the evolution of those behaviours following methods and theories in psychology. These new fields can provide quantitative and experimental support to topics that, to date, have been largely discussed only on a theoretical basis. Nonetheless, working with extinct species necessarily involves many limitations. Consistent theories on the evolution of our cognitive abilities must rely on the integration of different sources of information, on parallel and independent evidence from different fields, and on a proper attitude: openness and caution.


Assuntos
Evolução Biológica , Neurociências , Humanos , Antropologia , Encéfalo/anatomia & histologia , Neurociências/métodos , Cognição , Arqueologia
13.
J Morphol ; 283(10): 1318-1336, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36059180

RESUMO

Diploic veins (DV) run within the cranial diploe, where they leave channels that can be studied in osteological samples. This study investigates overall DV variability in human adults and the effects of sex, age, cranial dimensions, and dysmorphogenesis associated with craniosynostosis (CS). The morphology of macroscopic diploic channels was analyzed in a set of the qualitative and quantitative variables in computed tomography-images of crania of anatomically normal and craniosynostotic adult individuals. Macroscopic diploic channels occur most frequently in the frontal and parietal bones, often with a bilaterally symmetrical pattern. DV-features (especially DV-pattern) are characterized by high individual diversity. On average, there are 5.4 ± 3.5 large macroscopic channels (with diameters >1 mm) per individual, with a mean diameter of 1.7 ± 0.4 mm. Age and sex have minor effects on DV, and cranial proportions significantly influence DV only in CS skulls. CS is associated with changes in the DV numbers, distributions, and diameters. Craniosynostotic skulls, especially brachycephalic skulls, generally present smaller DV diameters, and dolichocephalic skulls display increased number of frontal DV. CS, associated with altered cranial dimensions, suture imbalance, increased intracranial pressure, and with changes of the endocranial craniovascular system, significantly also affects the macroscopic morphology of DV in adults, in terms of both structural (topological redistribution) and functional factors. The research on craniovascular morphology and CS may be of interest in biological anthropology, paleopathology, medicine (e.g., surgical planning), but also in zoology and paleontology.


Assuntos
Craniossinostoses , Crânio , Animais , Suturas Cranianas , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/patologia , Humanos , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Veias
14.
Anat Rec (Hoboken) ; 305(12): 3504-3515, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35485307

RESUMO

Brain morphology is the result of functional factors associated with cortical areas, but it is also influenced by structural aspects due to physical and spatial constraints. Despite the noticeable advances in brain mapping, Brodmann's map is still used in many research fields that rely on macroscopic cortical features for practical or theoretical issues. Here, the topological relationships among the Brodmann areas were modeled according to the principles of network analysis, in order to provide a synthetic view of their spatial properties following a criterion of contiguity. The model evidences the importance of the parieto-temporal region in terms of biological burden and topological complexity. The retrosplenial region is particularly influenced by spatial constraints, and the cingulate cortex occupies a position that bridges the anterior and posterior topological blocks. Such spatial framework should be taken into account when dealing with brain morphology in both ontogeny and phylogeny.


Assuntos
Mapeamento Encefálico , Córtex Cerebral , Córtex Cerebral/anatomia & histologia , Lobo Temporal , Giro do Cíngulo , Imageamento por Ressonância Magnética
15.
Perception ; 51(1): 3-24, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34967251

RESUMO

The study of lithic technology can provide information on human cultural evolution. This article aims to analyse visual behaviour associated with the exploration of ancient stone artefacts and how this relates to perceptual mechanisms in humans. In Experiment 1, we used eye tracking to record patterns of eye fixations while participants viewed images of stone tools, including examples of worked pebbles and handaxes. The results showed that the focus of gaze was directed more towards the upper regions of worked pebbles and on the basal areas for handaxes. Knapped surfaces also attracted more fixation than natural cortex for both tool types. Fixation distribution was different to that predicted by models that calculate visual salience. Experiment 2 was an online study using a mouse-click attention tracking technique and included images of unworked pebbles and 'mixed' images combining the handaxe's outline with the pebble's unworked texture. The pattern of clicks corresponded to that revealed using eye tracking and there were differences between tools and other images. Overall, the findings suggest that visual exploration is directed towards functional aspects of tools. Studies of visual attention and exploration can supply useful information to inform understanding of human cognitive evolution and tool use.


Assuntos
Arqueologia , Tecnologia de Rastreamento Ocular , Cognição , Fixação Ocular , Humanos , Tecnologia
16.
J Hum Evol ; 162: 103102, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34891069

RESUMO

Two Early Pleistocene fossils from Gona, Ethiopia, were originally assigned to Homo erectus, and their differences in size and robusticity were attributed to either sexual dimorphism or anagenetic evolution. In the current study, we both revisit the taxonomic affinities of these fossils and assess whether morphological differences between them reflect temporal evolution or sexual variation. We generated virtual reconstructions of the mostly complete ∼1.55 Ma DAN5/P1 calvaria and the less complete 1.26 Ma BSN12/P1 fossil, allowing us to directly compare their anterior vault shapes using landmark-based shape analysis. The two fossils are similar in calvaria shape to H. erectus and also to other Early Pleistocene Homo species based on a geometric morphometric analysis of calvaria landmarks and semilandmarks. The DAN5/P1 fossil bears a particularly close affinity to the Georgian H. erectus fossils and to KNM-ER 1813 (H. habilis), probably reflecting allometric influences on vault shape. Combined with species-specific traits of the neurocranium (e.g., midline keeling, angular torus), we confirm that these fossils are likely early African H. erectus. We calculated regression-based estimates of endocranial volume for BSN12/P1 of 882-910 cm3 based on three virtual reconstructions. Although BSN12/P1 is markedly larger than DAN5/P1 (598 cm3), both fossils represent the smallest adult H. erectus known from their respective time periods in Africa. Some of the difference in endocranial volume between the two Gona fossils reflects broader species-level brain expansion from 1.77 to 0.01 Ma, confirmed here using a large sample (n = 38) of H. erectus. However, shape differences between these fossils did not reflect species-level changes to calvaria shape. Moreover, the analysis failed to recover a clear pattern of sexually patterned size or shape differences within H. erectus based on our current assessments of sex for individual fossils.


Assuntos
Fósseis , Hominidae , Animais , Evolução Biológica , Encéfalo , Etiópia , Hominidae/anatomia & histologia , Crânio/anatomia & histologia
17.
Am J Hum Biol ; 34(2): e23612, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34000102

RESUMO

OBJECTIVES: Haptics involves somatosensory perception through the skin surface and dynamic touch based on the proprioceptive response of the whole body. Handling Palaeolithic stone tools influences the arousal and attentional engagement, which can be detected and measured through electrodermal activity. Although tool shape has generally been studied to consider tool functions or tool making, it is also a major factor in tool sensing and haptic perception. The purpose of this survey is to analyze whether the electrodermal reactions are influenced by stone tool morphology. METHODS: We first quantify the morphological variability of 72 stone tools through geometric morphometrics. Then, 12 stone tools from the previous sample were randomly selected to perform the electrodermal analysis in a sample of 46 right-handed adults. RESULTS: Elongation is the main factor involved in Lower Palaeolithic shape variation, followed by the position of the maximum thickness. Attention and manipulation time are mainly influenced by tool size, while arousal mostly correlates with tool weight. Electrodermal activity is apparently not influenced by the overall tool shape. Tool size, weight, and base morphology are the variables that mainly trigger an electrodermal reaction. CONCLUSIONS: Electrophysiological reaction is more sensitive to specific physical features of the tool than to its general outline. These features are not particularly different in worked pebbles and handaxes in terms of grasping, but underwent remarkable changes in other technological traditions. That changes associated with behavioral performances can be employed in cognitive archaeology to investigate the relationships between tool sensing and tool use.


Assuntos
Resposta Galvânica da Pele , Tecnologia Háptica , Adulto , Arqueologia , Mãos , Humanos , Tecnologia
18.
J Anat ; 240(2): 330-338, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34498271

RESUMO

In adult humans, the orbits vary mostly in their orientation in relation to the frontal bone profile, while the orientation of the cranial base and face are associated with the anteroposterior dimensions of the parietal bone. Here we investigate the effect of parietal bone length on the orientation of the orbits, addressing craniofacial integration and head orientation. We applied shape analysis to a sample of computed tomography scans from 30 adult modern humans, capturing the outlines of the parietal and frontal bones, the orbits, and the lateral and midline cranial base, to investigate shape variation, covariation, and modularity. Results show that the orientation of the orbits varies in accordance with the anterior cranial base, and in association with changes in parietal bone longitudinal extension. Flatter, elongated parietal bones are associated with downwardly oriented orbits and cranial bases. Modularity analysis points to a significant integration among the orbits, anterior cranial base, and the frontal profile. While the orbits are morphologically integrated with the adjacent structures in terms of shape, the association with parietal bone size depends on the spatial relationship between the two blocks. Complementary changes in orbit and parietal bone might play a role in accommodating craniofacial variability and may contribute to maintain the functional axis of the head. To better understand how skull morphology and head posture relate, future studies should account for the spatial relationship between the head and the neck.


Assuntos
Osso Parietal , Crânio , Adulto , Face/anatomia & histologia , Osso Frontal , Cabeça , Humanos , Osso Parietal/diagnóstico por imagem , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Base do Crânio/anatomia & histologia
19.
J Anat ; 239(5): 1050-1065, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34240418

RESUMO

Middle meningeal vessels, dural venous sinuses, and emissary veins leave imprints and canals in the endocranium, and thus provide evidence of vascular patterns in osteological samples. This paper investigates whether craniovascular morphology undergoes changes in craniosynostotic human skulls, and if specific alterations may reflect structural and functional relationships in the cranium. The analyzed osteological sample consists of adult individuals with craniosynostoses generally associated with dolichocephalic or brachycephalic proportions, and a control sample of anatomically normal adult skulls. The pattern and dominance of the middle meningeal artery, the morphology of the confluence of the sinuses, and the size and number of the emissary foramina were evaluated. Craniovascular morphology was more diverse in craniosynostotic skulls than in anatomically normal skulls. The craniosynostotic skulls often displayed enlarged occipito-marginal sinuses and more numerous emissary foramina. The craniosynostotic skulls associated with more brachycephalic morphology often presented enlarged emissary foramina, while the craniosynostotic skulls associated with dolichocephalic effects frequently displayed more developed posterior branches of the middle meningeal artery. The course and morphology of the middle meningeal vessels, dural venous sinuses, and emissary veins in craniosynostotic skulls can be related to the redistribution of growth forces, higher intracranial pressure, venous hypertension, or thermal constraints. These functional and structural changes are of interest in both anthropology and medicine, involving epigenetic traits that concern the functional and ontogenetic balance between soft and hard tissues.


Assuntos
Craniossinostoses , Crânio , Adulto , Cavidades Cranianas , Cabeça , Humanos , Fenótipo
20.
J Anthropol Sci ; 982020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33130632

RESUMO

The Florisbad fossil cranium was found in South Africa in 1932. Different authors proposed a taxonomic affinity with early Homo sapiens, Neandertals or late Homo heidelbergensis. Here, we review its neurocranial morphology, to supply an updated perspective on its paleoneurological features. The curvature of the frontal squama is definitely within modern human variation, although the anterior cranial fossa is very broad, comparable to that of the Neandertals. In contrast, the parietal lobe and the vascular networks are more similar to the morphology observed in more archaic human species, such as Homo heidelbergensis. The endocranial anatomy of the Florisbad skull displays a mosaic of derived and plesiomorphic features, which makes this fossil compatible with distinct phylogenetic scenarios. None of these traits are, however, strictly diagnostic in terms of taxonomy. This specimen is central to the question on the possible anagenetic evolution from Homo heidelbergensis sensu lato to modern humans.


Assuntos
Fósseis , Hominidae/anatomia & histologia , Crânio/anatomia & histologia , Animais , Evolução Biológica , Cefalometria , Humanos , Homem de Neandertal/anatomia & histologia , Paleontologia , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...